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Self-Consistent Diffusive Kinetics and Dissipative Structures 
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By analogy with a problem on the kinetics of the last stages of solid super- 
saturated solution decay, considered in Ref. 1, the problem on the kinetics of 
cell population development in the nutrient solution is formulated. The state of 
the system is described by the cell size distribution function and the concen- 
tration of nutrient in the solution. The stability of spatially homogeneous cell 
distribution is analyzed. Bifurcation, connected with the origin of 
nonhomogeneous spatial distribution of cells and nutrient, is discovered. 
Dissipative structures arising near the point of first bifurcation are found. 
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1. INTRODUCTION 

One of  the most interesting results Of I. M. Lifshitz, connected with the 
problems of  the statistical physics, is the development of  the theory of  the 
last stages of  solid solutions diffusional decay. (1) Physical peculiarity of  this 
problem consists in the consideration of  self-consistent evolution of  an 
ensemble of  objects; in Ref. 1 these objects are the grains of  a new phase, 
which effectively interact through the solution. The state of  the grain 
ensemble is described by the size distribution function whose form essentially 
depends on the law of  a single grain growth. In its turn, the single grain rate 
of growth is considered as a definite function of  the nutrient concentration in 
the solution. And the state of  the solution is described by some balance 
equation, which takes into account  a supersaturation of  the solution and 
content of  the substance in the grains of  a new phase. The latter is defined by 
the cell size distribution function, 
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Formally, a similar situation arises when one describes the evolution of 
a cell sy s t e m in the nutrient solution. This analogy becomes clearly 
expressed in the case, when the state of the single cell may be uniquely 
defined by the radius. Such a system essentially differs from an ensemble of 
grains, because (1)there are processes of cell death and division, and (2)the 
rate of cell growth is a positive value, i.e., there is no process analogous to 
the dissolving of the grains of small radius. 

When considering the process of coalescence, (1) evolution of an 
ensemble of voids and vacancies in the crystal, (2) kinetics of the new phase 
nucleation, (3) evolution of a system of dislocation loops in a crystal under an 
applied load, ") and similar processes, one usually restricts oneself with the 
investigation of a spatially homogeneous situation. In the present paper an 
assumption about nonhomogeneous spatial distribution of cells and nutrient 
is essentially used. Then the processes of diffusion which can lead to the 
origin of a spatial structure become important. 

2. EVOLUTION OF SPATIALLY NONHOMOGENEOUS CELL SYSTEM 

Consider the ensemble of cells suspended in a nutrient solution. The 
number of cells is believed to be sufficiently large to introduce the 
distribution function in some parameters, particularly in cell sizes. At the 
same time the number of cells per unit volume is believed to be sufficiently 
small to neglect the direct interaction between the cells. Further, we shall 
consider the case when the concentration of substrate absorbed by the cells is 
small enough. In this case the cell growth rate depends on the value of this 
concentration like in the coalescence problem. (5) This means that there is an 
indirect interaction between the cells through the solution. 

Let us introduce the cell size distribution function f(R, x, t), where R is 
the celt radius and x is the spatial coordinate. The full number of cells N(t) 
in such a system equals to 

N(t) = fv dx ~: f(R, x, t) dR (1) 

where V is the system volume. 
The evolution of the function f(R, x, t) is described by the continuity 

equation in the space of variables R and x taking into account the spatial 
diffusion of cells and substrate: 

~f ~ i f  - - - -  +DcAf-v(R)w(R) f (R ,x , t  ) ~-~ t- - ~ -  (vf) = r 

+ 2 ~ v(~/-2 R) w(~/2 R ) f ( ~  R, x, t) (2) 
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where v(R) - dR/dt is the growth rate of the cell of radius R; r is the charac- 
teristic time of cell death; D c is the coefficient of cell diffusion; w(R) is the 
conditional probability of the division of the cells of radii R, i.e., the 
probability that a cell of radius R will be divided in the interval (R, R + dR). 
The function w(R) is connected with the absolute probability of the division 
~o(R) as w(R)=~o(R) /{1- f~o(x)dx} ,  f ~cp (x )dx=l .  Further we shall 
consider D c = constant independent on the cell size R. 

In the case of small concentration e, the rate of growth takes the form (~) 

v(R, c) = c(t)u(R ) (3) 

where u(R) is some function of radius taking into account the diffusive 
mechanism of substrate supply to the cells. The examples of functions u(R) 
are given in Refs. 5, 7, and 8. 

The equation describing the evolution of the function c(t), similar to 
that in the coalescence problem, is the balance equation for the substance in 
the solution: 

-~ = D, A c -- ?(R, c) f (R,  x, t) dR (4) 

where D s is the coefficient of substrate diffusion; y(R, c) in the simplest case 
equals ~oRZv(R, e), where Y0 = const.(5) The integral term in (4) describes 
the intensity of substrate absorption by the cells. 

We shall find the solution of Eq. (2) in the form which allows the 
separation of variables: ~6'9) 

f (R ,  x, t) ---- ~(R) r/(x, t) (5) 

with the boundary conditions in the form 

t3f = 0 ,  cls c~ (6) 
On s 

where s is the outside surface of the system, Of/~n is the normal derivative at 
this surface. 

Equations (2)-(4) with boundary conditions (6) and corresponding 
initial conditions completely describe the behavior of the cells-solution 
system. Substituting (5) into (2) and (4) we obtain the following set of 
equations: 

= 2c(x, t)~ 1 - + r 1 + D e Atl (7) 
c~t 
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~R (u~) = - ~  - u(g ) w(R ) ~(R ) 

+ 2 ~ u(ySR) w(~R) r (8) 

~t =D~Ac-?orl(X,t) c(x,t) f? R2u(R)r (9) 

where ~, is the integration constant. 
Equation (8) is autonomous and can be solved independently. As shown 

before, (6) the solution of this equation can be simply obtained in the case 
when the minimum size of the divided cells R 3 is greater than the maximum 
size of the cells being born R 2 = R4/~/2. In this case (6) 

~(R) = u - - ~  exp - ~  

• ~o(r) exp - s  
R3 / ~  u(x) 

~ ( R ) = u - ~ e x p  --~, 2 

r = - - ~  exp - ~  ~ u - ~  1 - R~ 

dr (R~<R <R2) (10) 

( R 2 < R < R 3 )  (11) 

~o(x) dx] (R 3 < R < R4) (12) 

taking into account that a mother cell of radius R is divided into two 
daughter cells of radii RIll-2. The cells are divided in the interval (R3,R4) 
are born in the interval (R1,Rz). Parameter 2 can be found from the 
boundary condition at the point R2(6'1~ 

~ - =  q~(r) exp -~" ~- u(x) dr (13) 

Particularly, in the case of the exponential law of a single cell growth, 
u(R) = vR, the parameter 2 has the following spectrum: 

27t/r 
)~=3v+i3Vln 2 , x = 0 ,  +1 ,  + 2  (14) 

When the probability of cell division has the form ~0(R)-----6(R-Rf), this 
spectrum is 

2~ In 2 2z~x P = (Rs dx 
= - - i f -  + i - - i f - '  JRI/~ U(X)' X = 0, +1, +2,... (15) 
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We used the complex parameter 2 of the form (14) and (15) for 
consideration of the stationary regime establishment in a homogeneous 
system. (6) Now we shall consider only the real values of parameter 2, 
because of (7) is a nonlinear equation for real values. 

Equations (10)-(13) completely define the behavior of the function ~(R) 
in the whole interval (R1, R4). Substituting ~(R) into Eq. (9), we obtain the 
following set of equations: 

cgr/ 1 
~--~ = D e Atl -- --~ tl + 2ctl 

(16) 
& 
~---~ = D SAe  -- aerl 

where we introduced the notation a = Y0 f~'l R 2u(R) ~(R) dR.  
The boundary conditions for system (16) have the form (6). The 

function r/(x, t) is a spatial cell density when there is the normalizing 
condition f ~  ~(R) dR = 1. 

3. BIFURCATION OF THE HOMOGENEOUS STATIONARY REGIME 

Consider the one-dimensional problem, assuming the cells are contained 
between two parallel plates with coordinates x =  0 and x = L .  Let us 
introduce the dimensionless variables 

r = x / ( D s r )  1 / 2 ,  y = a r r  l, z = 2 r c ,  O = t / r ,  ~ = D c / D  , (17) 

One can consider the cell diffusion coefficient to be much less than the 
nutrient diffusion coefficient, i.e., e <~ 1. Using the dimensionless variables 
set, (16) takes the form 

ey 
c~--O = CArrY + y z  -- y 

(18) 
~z 
~--0 = dr r z  - y z  

The boundary conditions corresponding to (6) have the form 

Oyc~r o = ~r L/(os.,l/2 = O, z(O) = z [ L l ( D s r )  1/2] = 2rc s 

This problem allows a homogeneous stationary solution 

y = O, z = 2rc s 

(19) 

(2o) 
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To carry out the linear stability analysis of this solution, let us introduce the 
variables yl(r ,  O) = y(r,  0), z l ( r  , 0)  = z ( r ,  O) - -  ) .rCs,  where Izl(r,  0)1 ~ 2rc s. 
Then 

6~y 1 82y l  
- - 8  

690 ~ r  2 

8z 1 82zl 

80 - -  t3r 2 

--  Yl + 2ZCsYl 

~'ZCs Y 1 

(21) 

Function y~(r, O) has to be a nonnegative value. The solution of (21) for 
a homogeneous deviation y~(r, 0) = Y0 = const can be presented as 

yj (r ,  O) = yo e~~ (22) 

where 
e = )l,z'c~ - 1 (23) 

Homogeneous  distribution (20) is stable at a < 0. At a > 0 distribution 
(20) loses its stability. I f  we take c s as the bifurcation parameter ,  it can be 
easily shown that  the first bifurcation of solution (20) takes place at the 
critical value 

csCr = 1/2r (24) 

Consider the behavior  of  the solution near the bifurcation point. Let us 
introduce the dimensionless parameter / t :  

cr cr / t = ( c  s - c  s )/c s = 2 v c  s - l ~  1 (25) 

Let us describe the arising dissipative structure. We shall find the 
solution of (18) in the form of the power-series expansion in/t: 

y(r ,  O) y(O) ,y(1) y(2) 

When g ~ 0, this series has to converge to homogeneous solution (20), 
therefore 

y(0) = 0, z (~ = ,~re cr = 1 (27) 

For the first-order terms in a,  we shall obtain the following equations: 

e d2y (I) 
-~ dr---- T -  + y m z m  = 0 

d2z(1) 

dr 2 y(~) -=- 0 

(28) 
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One can see that the behavior of the solution of these equations essentially 
depends on the value of the ratio e/jr. In the case/,t/e ~ 1, Eqs. (28) are 
simplified 

d2y~l) d2z(') 
_ y~ l )  = 0 ( 2 9 )  dr 2 O, dr 2 

Whence, taking into account the boundary conditions, we find in zero/a/e 
order 

y(1) = a = const (30) 

or[ 
z(1)= 1 +~-- r - -  (D,r)I/2 (31) 

Constant a can be found in the next/.t/e order. It is easy to show that 

a = 1 2 D , r / L  2 (32) 

Turning to the initial variables, we finally obtain 

( ' )  2rDs - ~rr (33) r/(x)= 12 a--~- T c s 

( 1 ) ( x  2 x )  (34) 
e (x )  = c~ + 6 c,  --  -~r L 2 L 

The correction to (33) and (34) at e,~ 1 has an order of/~2/e. In the 
c r  c r  and for vicinity of the point e s = c~ the solution is defined both for e~ > e s 

e s < e~ r. However, the stationary structures (33) and (34) arising in the 
vicinity of the bifurcation point are stable only at the supercritical branch 
(e~ > c~ r) and unstable at the subcritical one. 

Let us consider now the case e/Ct ~ 1. As it is known, (11) the solution of 
the equation with the small coefficient at the higher-order derivative has to 
be found separately far from the boundary and in the boundary layer. Far 
from the boundary, at distances 6r~> (e /~)  ~/2, one can make regular 
expansion of the functions y ( l ) ( r )  and z(1)(r) in the powers of/~, which gives 
the solution of the form 

y~l) (r)  = O, z~l) (r)  =f l  = const (35) 

in this region. 
This solution satisfies the boundary conditions at fl = 1, and coincides 

with the homogeneous solution (20), which is defined in the whole region 
( O , L / ( D s r ) l / 2 ) .  However, as follows from (24), such a homogeneous 
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solution becomes unstable at/~ > 0 even in the case e ~ 0. Therefore, in the 
boundary layer the solution must differ from (35). 

In the vicinity of the boundary one has to take into account the term 
(e//a)(d2y(1)/dr2), because of the large gradient of the function yC1)(r) in this 
region. The derivatives of the functions y(a)(r) and z(1)(r) have the same 
order of magnitude, and this means that d2z(1)/dr 2 is also large. So in zero 
e/Ct order equations (28) in the boundary layer are simplified: 

d2y (1) 
/d dr  2 + y (1 ) z (1 )=O (36) 

d2z (1) 
dr ~ - 0 (37) 

Designate the solutions of Eqs. (36) and (37) as y(0 a) and z o(a). From the 
second equation we obtain 

z(o 1) = 1 - M r ,  M = const (38) 

Substituting (38) into (36) 

d E 

dr z 

we obtain Airy's equation 

y(01) + (1 -- M r ) ~  y~l) = 0 (39) 

For large values of r, the solution of Eq. (39) has to transform to solution 
(35). Therefore, as a solution of (39), one has to take Airy's function Ai(x), 
which exponentially damps at r > 0: 

k = const (40) 

where k is an amplitude of the distribution function. 
Function y(oa)(r) describes the spatial density of cells, and thus it has to 

be a nonnegative value. Therefore, taking into account boundary condition 
(19), the point r = 0 must correspond to the first maximum of oscillations of 
function (40). Let x 0 is coordinate of the first maximum of Airy's function. 
Then the magnitude of M can be obtained from the condition 

( 1 ) 3/2(/~) L/z 
M =  - - - -  

\ Xo/  \ e l  

Because of x 0 ~ --1, M ~  (/t/e) u2. 
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For  obtaining the coefficient k, let us consider the solution of  the second 
equation of (28): 

z ( 1 ) ( r )  = y(01)(~1) d~l d~ + 1 - M r  (41) 

Since for large r solution (41) must turn to (35), the following conditions, 

dz( ' ) ( r )  
lira z(1)(r) =fl ,  lim = 0 (42) 
r ~oo r-me dr 

must be satisfied. The second of these conditions defines the value of the 
constant k: 

k = 3(P/~)1/3 M4/3 (43) 

1 + 3 f~ 0 Ai(~) d~ 

From the first condition of  (42) one can obtain parameter  fl: 

3 fx~ x Ai(x) dx 
fl = 1 + (44) 

x 0 1 + 3 fx~ Ai(x) dx 

Since x o < 0, we obtain fl < 1. 
Similarly, one can obtain the solution near the boundary  r = L / ( D  st) 1/2. 

For this purpose it is sufficient to introduce new variable r~ = L / ( D  s r)~/2 _ r 
instead of r. 

Thus, two situations m a y  arise. In the case p /e  ~ 1, when the deviation 
from the critical concentrat ion c cr is small, the stat ionary nonhomogeneous  
distribution of the form (34) arises in the system. In the zeroth order in p/e,  
the cell density in this case will be spatially homogeneous.  In the case 
e/p ~ 1, when the diffusion coefficients for cells and nutrient strongly differ 
from each other, cell concentrat ion differs from zero only in the boundary  
layer of size of (e/p) ~/2. In this layer the spatial cell distribution is described 
by the Airy 's  function of the form (42). 
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